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Minimax estimation in a deconvolution problem 
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Scientific Research Institute of Physics, St Petenburg University, Ulyanovskaya 111, 
Petrodvoretz, 198904 St Petenburg, Russia 

Received 13 February 1991 

Abstract. We consider a convolution equation with the right-hand side known with a 
random noise. A priori information that the solution belongs to an ellipsoid in Hilben 
space is given. We construct the minimax estimators of the convolution of the solution 
with a generalized function h. As an example the estimation problem of derivative of 
solution is studied. 

1. Introduction 

Let the convolution equation 
m 

((I * x)( 1 )  = (I( f - S)X( S) ds =f ( f) t E R '  L 
be given with the kernel (I and an unknown right-hand sidef( f). Instead of the function 
f(t) we observe a random process y ( f ) = f ( t ) + ~ t ( f ) ,  E > O .  Here c(f) is a Gaussian 
stationary random process with a correlation function ~ ( 1 )  = €f(f){(O) and € t ( t )  = 
0, f E R'. 

The problem is to estimate a convolution u ( t ) = ( h  * x ) ( f )  where h is a given 
function. We allow the function h to belong to a class of generalized functions. For 
example, h may be a derivative, (h  * x ) ( f ) = d x ( f ) / d f .  

In this paper we develop the minimax approach to this problem similar to [ l ,  21. 
This approach may be described as follows. 

Let a priori information about the solution be given 

x ( ~ ) E  Qr = { x : x ( f )  = 

where P,>O and bEL2(RI). 

m m I b(f -s)z(s) ds, [-, z2(s) ds<2PoT, supp Z(S)E ( -T,  T) - ~L 

(1.1) 

The minimax risk of any estimator u*(f)  = U*( I, y )  equals 

We need to constmCt the minimax families of estimators U** = {u*T*(f)]F such that 

pT(u%*)= inf p T ( u * ) ( l + O ( l ) )  (1.2) 

as T +  CO. Here fl is the class of all estimators. 
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We call 

'4'- =limsupp,(u*,*) 
T-CO 

the optimal minimax risk in this problem. 
A similar approach is also developed for the scheme with discrete time. Assume 

we observe the random variables y(t , )=y(jA),j=O,*l ,*2,  ..., AZO. The problem 
is to construct minimax families of estimators U** = ( u $ i ( y ) } y  such that 

lim sup lim sup p T ( u $ i )  
A-0 T-cc 

=limsup limsup inf pT(u*)( l+o(l)) .  (1.3) 
A - 0  Tam "*en 

Denote by A, the left-hand side of (1.3). For any function Z E  L2(r') denote 
m 

exp{2~riot}z( 1 )  d t  

Ilzll=(ICO -m Iz(t)12dt)"2. 

Using this notation we may WTi!P 

QT ={x: X ( o )  = B ( o ) Z ( o ) ,  I [ Z I ~ ~ < ~ P , T ,  supp zc ( -T ,  T ) } ,  

In the case lB(o)I2= (l+[o12')-', p >0,  such an assignment resembles that of the ball 
in the Sobolev space W;'((-T, T ) ) .  A comprehensive discussion of this definition of 
a priori information is given in [2]. 

For the estimation problem of the solution ~ ( t )  similar results have been obtained 
in our papers [l, 21. In those papers we considered the classes Cl of all estimators and 
linear ones respectively. Similar approaches of estimation h * x have been developed 
in [3-5]. The investigations of these papers are concerned with robustness problems. 
The minimax estimators constructed in our paper are also robust. 

The proof of this paper's results is based on the following arguments. We define 
a linear estimator on which the asymptotical bound As of minimax risks is achieved. 
After that we construct a family of Bayes estimators with the Bayes risks tending to 
A, as T +  00. Hence using the argument that the Bayes risk does not exceed the minimax 
one we obtain the paper's results. 

A priori Bayes measures of Bayes estimators are conditional measures of Gaussian 
random processes t T ( s ) ,  s E RI, under condition lT E QT. The introduction of such a 
condition is caused by a priori information x ( t ) E  QT. The random processes tT are 
defined as follows. At first we introduce a Gaussian stationary random process e( 1 ) .  t E 

R'. The spectral density of this process is found as a solution of some extrema1 problem 
maximizing Bayes risk. Then we put  CT(s)  = (b  * e T ) ( s ) ,  S E  r', where e T ( t )  = e ( r )  for 
111 < T and e T ( t )  = O  for 1r1>  Z 

Similarly to lemma 4 in [6] (see also [7]) it is shown that P(LT(s)e Or)  = l + o ( l )  
as T + m  and the effects caused by the events erkQ can be neglected. The proof of 

is omitted. Thus the calculation problem of the asymptotic of Bayes risk with conditional 
apriori measures PT is replaced by the same one having unconditional apriori measures 
generated by a random process cT. In lemma 2 we show that the Bayes risks in the 
last problem converge as T+ m to the risk of Wiener filtration. The Wiener filtration 

+ha.. o..mrt:nnr :- h O r n A  mm *hp lo... ,.F I O m D  n..mhnrc I t  hoc s rt .nAnrA c t n i r t i i r p  2nd 
L. .USl  ',.,O.,.LL".LD 10 "',I.," "11 ,U- I',- "L .',Le' .IY..."*.*. 1. &...I -1.-.4..-.1 ".."".I." -..- 
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is based on a priori information that the solution x is a realization of the stationary 
random process C ( s ) = ( b *  e ) ( s ) , s E R ’ .  

2. Main results 

In this section the main theorems will be formulated and the examples of asymptotics 
of minimax risks as E + 0 will be indicated. The proof of theorems will be given in 
section 3. 

For any s E R’ denote (s)+ = max{s, 0). Introduce the function 
m 

Q ( p )  = I A ( o ) B ( w ) ~ ’ ( ~ H ( w ) B ( w ) ~ ~ - ’ -  I ) + R ( o )  do. (2.1) L 
Denote pe = sup{p: Q(p)  3 Po, p > 0). Make the following assumptions: 
(i) The functions a ( t ) ,  b ( t ) ,  r ( t ) ,  I H ( w ) B ( o ) l  belong to L , ( R 1 )  and &(RI)  simul- 

(ii) I A ( o ) B ( o ) l > O  for all  ER' and H ( w ) B ( w ) + O  as IoI+m. 
(iii) There exists a decreasing function g(7)E L , ( R : )  such that IA(o)B(w)12< 

For all p>O define the kernel k,(t) by its Fourier transformation K,(o)= 

taneously. The functions IA(o)B(w)12R-’(w) and I H ( o ) B ( o ) l  are bounded. 

g(lol) for all o E R‘ .  

A - ’ ( w ) H ( o ) ( l  -p lB(~)H(~) l - ’ )+.  

Theorem 1 .  Assume (i) and (ii). Then the family of estimators U$*( 1, y )  = (k, * y ) ( t )  
with the value of parameter ,.L = ps is asymptotically minimax. The minimax risk has 
the following asymptotics: 

m 

ly, = E ’  I A ~ 2 ( ~ ) H 2 ( o ) l ( l - p . l B ( w ) H o l - 1 ) + R ( w )  do. (2.2) L 
Note that the estimators U$* do not depend on 7: 

Theorem 2. Let the random process y ( l )  be observed in discrete points t ,=jA, j =  
0, i1, *2, . . . Let assumptions (i)-(iii) be satisfied. Then the family of estimators 

m 

U E ( ~ , Y ) = A  Z k , ( t - t , ) ~ ( t , )  
,=-m 

is asymptotically minimax. The asymptotic of minimax risk A, equals to the right-hand 
side of (2.2). 

Remark. The assumption of boundedness of I A ( o ) B ( o ) 1 2 R - ’ ( w )  seems to be 
unnatural. Note that if this assumption is not satisfied and l B ( ~ ~ ) H ( o ) l ~ l o l ’ + ~ + O  as 

+ m for some S > 0 then the estimation problem is not ill-posed. For this case the 
order of A. is e2. 

Remark The results of theorem 1 also hold if c ( t )  is a white noise. In this case 
R ( w ) = l  for all W E  R’ and assumptions r ( t ) E  L , ( R ’ )  are omitted. For theorem 2 a 
similar assertion is also valid. In this version of theorem 2 c(t,) are independent 
Gaussian random variables. These results are obtained by slight modification of the 
proof of theorems 1 and 2. 
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Remark In practical problems the observations t(1,) often only depend on near 
observations e( f j , ) .  In order to involve such a situation we considered in [ 11 the model 
ofobservations #($) with the correlation function r(r /a , )  where a&+ Oas A+O. Similar 
results can also be proved for this problem. 

Remnrk. As we said, h may be a generalized function. For example, if v(r )  = dx(t)/dt 
then H ( o )  =2?rio exp{2?rito}. If a ( r )  is a delta function we obtain the usual problem 
of derivative estimation (see [8,9]). 

Now we give examples of asymptotics YE as E -f 0. 

Example 1. Let 25-28 + 1 <O, 2y -25 - Z T +  1 > 0 and 

IB(o)llola = W l + o ( l ) )  (2.3) 

IA(~)IIoI'= U(l+o(l))  (2.4) 

R(o)lo12' = G(l+o(l))  (2.5) 

lH(o)llol'= N(1 +o(l)) (2.6) 
as 101 + co. Then 

= E4"N2U-2GCi-2"(p +5)/((2?+8 - 2 ~ - l + l ) ( y f 5 -  7f0.5))  

where 

C, = PoG-' W2Uz(2~) -1 (2y+8  -27-5+ 1) 

U = ( p  +5)/(2y+28 - 2 T +  1). 

Example 2. Assume (2.4)-(2.6) and 

lA(~) l loY exp{dIolY}= U( l+o( l ) )  

as w + 00. Assume also 25 +28 > 0. Then 

'Pr = PoW2N211n E/dl""+'"'. 

Example 3. Assume (2.4), (2.5) and (2.7) and 

lWo)ll4" exptplwl'}= W + o ( l ) )  

as w + m. Assume also 0 < 5 < y. Then 

Y. = Po W2N211n E/dl-""2"''' exp{-2plln E/dl"'}.  

3. Proof of theorems 

The proof of theorem 1 is based on lemmas 1 and 2. 

ess sup G(o)  = inf{c: Zebesque measure { U :  G(o)> c, o E R'}  equals zero). 

Lemma 1. Assume (i) and (ii). Then for any function k €  L 2 ( R ' )  

For any function G(w) denote 
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The proofs of similar results are given in [2,7]. We omit these arguments here. 

Put K ( w )  = K , - ( w ) ,  w E RI. Then arguing similarly to [2] and [6] we obtain that 
Note that the right-hand side of (3.1) equals the limit of p r ( k  * y )  as T+ CO. 

4, does not exceed the right-hand side of (2.2). 

Lemma 2. Assume (i) and (ii). Let t~ E L2( R ’ )  and 11 VI/’< Po, ess sup1 V ( o ) l  <a. Then 

Note that the right-hand side of (3.2) is the risk of Wiener filtration with a priori 
information that a solution x ( t )  is a realization of a Gaussian stationary random 
process with spectral density I V(w)B(w)12.  

It is easy to see that the supremum of the right-hand side of (3.2) is achieved on 
the function IV(w)l’= e 2 R ( o )  x IA(W)B(W)I-’(~.;’IH(~)B(O)! - l )+ .  This supremum 
equals 4,. Thus theorem 1 follows from lemmas 1 and 2. 

Proof of lemma 2. Let e ( t ) ,  f E RI, be a Gaussian stationary random process with 
spectral density I V(w)l’. Define the random process eT as we said in the introduction. 
We prove only that the Bayes risks of Bayes estimators having a priori measures of 
random processes l T ( t ) = ( b  * e T ) ( t )  converge to the corresponding risk of Wiener 
filtration. The other arguments are obtained by easy modification of those developed 
in [ 1,6,7] and are omitted. 

By virtue of the a priori measures being Gaussian the Bayes estimators equal 
m 

&(t,  Y ) =  kT( t ,  S ) Y ( S )  ds. (3.3) 

Here the kemel kT(t,  s) satisfies the equation 
m m 

E u ~ ( t ) f ( s ) - E  j -mk~( t ,  w)f(W)dWf(s)+c2J  -m kT( t ,  w)r(w--s) dw (3.4) 

forall  f E ( - T , T ) a n d s E R ’ .  

the estimator of Wiener filtration 
If we make the formal limit transition on T +  00 we obtain the similar equation for 

m 

; ( t , y ) =  J - m k ( f - s ) ~ p ( s ) d s  (3.5) 

E ( h  * l ) ( t ) f , ( s ) = E ( k * f , ) ( r ) f , ( s ) + ~ ’ ( k *  r ) ( t - s )  (3.6) 

5 ( O = ( b *  e ) ( O  & ( f )  = ( a  * O(0 = f ( t ) +  G3f) 

where 

t E R ’  S E R ’ .  

Applying the Fourier transformation to (3.6) we obtain 

K ( o )  = H ( w ) A ( - o ) l B ( w )  V(w) l ’ ( lA(w)B(w)  V ( W ) ~ ~ + E ~ R ( O ) ) - ’ ,  

For the proof of lemma 2 it remains to show 

lim (2T)-’J ’ €€,(u^T(r)-f(t))2dt=0 
T-m -r 

(3.7) 

where the first mathematical expectation E is taken overthe random process e ( t ) ,  t E RI. 
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Denote by K T (  f, o) the Fourier transformation of kT( 1, s) with respect to the second 

Put S (T)=T-d(T)where  d ( T ) + m , d ( T ) / T + O a s  T + m .  
In order to prove (3.7) we now show 

variable s. 

IIKT(f, o) - K ( w )  exp(2?riof})R’/2(o)lI = o(1) (3.8) 

uniformly in f E (-S( T ) ,  S( T ) )  as T +  00. 

Introduce the function D ( w )  = sin(ZaTo)/(2aTo). For any function q ( s )  and 
f e R ’  denote q , ( s ) = q ( f + s ) .  Put u * ( t ) = ( u * u ) ( f ) .  For all t eR’ ,T>O,  define the 
projector PT, such that PT,q(s) = q($),y-T-,,T-,)(s) for any function q c  L2(Ri). Here 
X ( - ~ - , , ~ - , ~ ( S )  is the indicator of interval ( - T -  1, T- 1) .  Put PT = PTO. Denote by I the 
identity operator. 

Define the functions G ~ ( T ) = A ( T ) H ( - T ) I B ( T ) V ( T ) / ~ ~ ~ ~ { ~ ~ ~ ~ ~ T )  and G , ( T ) =  
A(T)B(T) Y,(T)  where 

(3.9) 
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The operator rT is self-conjugated and non-negative. Therefore we may write (3.9) 
as follows: 

R ’ / Z ( o ) K T (  t, o) = ( I  + R ~ ” 2 f , R - 1 / 2 ) - 1 R - ” Z ( o ) G T , ( o ) .  

The function A ( o ) B ( o ) R - ’ / ~ ( o )  is bounded. Hence, using boundedness of 
operators 0, * I VIz * D-?,; we obtain that the operators R-’/21‘TR-1/2 are uniformly 
bounded in T > 0. Therefore for any S > 0 there exists such a polynom II that L,-norms 

(1 + R-”2rTR-’/2)  -n(R-1/2rTR-1/2) 

(1 + R-1/ZrR-I/2)-1 - n ( R - ’ / 2 r R - ’ / Z )  

do not exceed S. Hence, by (3.10), we obtain that (3.9) holds if l l (R-”2( r r -  
r ) R - ’ / 2 ) F z l l = o ( l )  uniformly in t c ( - S ( T ) , S ( T ) )  as T + m  for any F , =  
( R - 1 / 2 f R - ’ / 2 ) “ G , ,  m = 0, 1,. . . . 

Denote Z,(o) = R-’” (w)A(o)B(w)F, (o ) .  We have 

llR-”2(r‘T - f ) R - ’ l 2 F  TI1 < CIIPTU~ * PTz, - 02 * Z J  =0(1) (3.11) 

uniformly in f~ ( - S ( T ) ,  S ( T ) )  as T + m .  The equality in (3.11) is proved similar to 
(3.10). 

We have 

(3.12) 

uniformlyin t e ( - S ( T ) , S ( T ) )  as T+m. 
We have also 

S ( T )  m 

l k ~ ( r , ~ ) t ( ~ ) d ~ - ( k  *t)(1)l2dt E j - S ( T )  d f  1-m 

s(r) m 

R ( o ) l K T ( t ,  w ) - K ( o )  exp{2rriot}12do = o ( T )  (3.13) 
= I_,(, d t  L 

as T-m. 
Now (3.12) and (3.13) imply (3.7). This completes the proof of lemma 2. 0 

Remark. Assume b is a delta function. Then a priori measures are generated by 
Gaussian stationary random processes eT(s) ,  s E (-T, T ) .  We proved that Bayes risks 
for these a priori measures tend tn the risk of corresponding Wiener filtration and 
Bayes kernels also tend to the Wiener filter as T +  m. In such a way we obtain the 
modification of the problem of Wiener filtration. For the estimation problem of x( t )  

similar results have been formulated in our paper [l]. 
The proof of theorem 2 is based on lemmas 3 and 4. These lemmas are the analogues 

of lemmas 1 and 2 respectively. 
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Lemma 3. Assume (i)-(iii). Then for any function K E L,(r ’ )  it holds 

A, s A-’ 1 m m  

1 W ( w + j / N l ’ R ( w )  dw 
-m j = -m 

ess supl~(w)l’lH(w) - A - ’ A ( ~ ) K ( ~ ) ~ ’  

+ esssupA-2 1 E l K ( o J - l / A ( w + ( j - l ) / A )  

x B ( w + ( j -  1)/A)I2 

i + o j + n  

]“’J’. 
[ 

(3.14) 

The proof is similar to that of lemma 2 in [7] and is omitted. 

Lemma 4. Assume (i)-(iii). Let u c L 2 ( R ’ ) ,  and esssup(V(w)(<m. Then 

x ? IA(w + j / A ) B ( w  +j /A)  V(w +j/A)I’+ R ( w  +j/A)))-’]  dw (!=-- .~ 
(3.15) 

Let the functions K and IVI2 be the same as in the proof of theorem 1. Then 
for all O < A < A , .  

theorem 2 follows directly from (3.14) and (3.15). 

Proof of lemma 4. The proof is similar to that of lemma 2. It is based on the same 
definition of the Gaussian stationary random process e ( s )  and calculation of 
asymptotics of Bayes risks as T + W .  The difference in analytical methods is insig- 
nificant. All such differences we may clearly see in the proof of the analogue of (3.11). 
The arguments will be given only for this proof. 

The discrete Fourier transformation of r( $) is 
.̂ 

R , ( T ) =  1 R ( r + j / A ) > C > O  
j = -m 

where T E (-(2A)-’, (2A)-’). 
The kernel of operator rT(7, 7,) equals 

m m m  

j=-mj=-m 1 1 A(T-j /A)B(T+j /A)  j - m D ( T + j / A - w ) l V ( w ) l ’  

X D l w - ~ , - j , / P )  d o 8 ( - ~ ~ - j , / A ) A ( - ~ ~ - j , / A ) .  

Let 11 . I I c  be L2((-(2A)-’, (ZA)-’))-norm. Let F belong to L2((-(2A)-’, (2A)-’)) .  
Define the function M , ( T ) ,  T E  R ’ ,  as follows. Put 

M,(T)  = A(-T)B(-T)F(T-j /A) exp(2niwf) 

for 

T E  ( (Zj- l ) / (ZA).  (Zj+l) / (ZA)) ,  j = O ,  * l ,  i2,. . . . 
It is easy to see that M , ( T )  E &(RI).  
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Introduce the multiplication operator r by 

j= - -  

Similarly to (3.10) it suffices to estimate 

iiv, -r)F,ii 

It follows from assumption (ii) that 

m 
I A ( T +  j / A ) B (  T +  j /A)I2  < C C CO T E  R' 

j = - m  

Hence the right-hand side of (3.16) does not exceed 

x M , ( ~ ~ ) d o  d T 1 - I V ( T + j / A ) l Z M , ( T )  dT 

= IIpTv2 * PT, - v2 * mJ'= o(1) 

as T+m. 
This completes the proof of the analogues of (3.11) and lemma 4. 
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(3.16) 

0 

4. Discussion 

The model is intended for the estimation of the convolution of the solution x ( t )  with 
a given smooth or generalized function h. The use of the smooth function h for the 
estimation is natural for the study of the behaviour of irregular solutions. The estimation 
problem of the convolution of a solution with a generalized function often arises in 
practice as the estimation problem of the solution derivative. 

In our papers [ 1,2] we indicated a whole range of merits of the model and estimators 
arising. The assignment of the sets Q+ is natural. The minimax estimators U** are 
robust and depend on the assignment of noise only through the parameter of regular- 
ization F. The Fourier transformation of estimators kernel has a finite support. 

The deficiencies of the model are as follows. We ought to have introduced the limit 
transition as T +  m. As a consequence the signal x( f )  has the support expanding as 
T -  m and the powers of signal and noise tend to infinity as T-. a. The ratio of powers 
of signal and noise naturally remained a constant. It is very difficult to do without 
such an assumption. The model of Wiener filtration also contained assumptions of 
such a type. 
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The lower bound of minimax risk is achieved on fast oscillating functions with the 
period of oscillation tending to zero as E + 0. It is clear that the real signal x may not 
be fast oscillating. Then the risk will have another order of convergence as E + 0. This 
is the usual situation for asymptotic minimax problems. Our results are obtained for 
fixed E > 0. 
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